Adhesion energy of receptor-mediated interaction measured by elastic deformation.

نویسندگان

  • V T Moy
  • Y Jiao
  • T Hillmann
  • H Lehmann
  • T Sano
چکیده

We investigated the role of receptor binding affinity in surface adhesion. A sensitive technique was developed to measure the surface energy of receptor-mediated adhesion. The experimental system involved a functionalized elastic agarose bead resting on a functionalized glass coverslip. Attractive intersurface forces pulled the two surfaces together, deforming the bead to produce an enlarged contact area. The Johnson-Kendall-Roberts (JKR) model was used to relate the surface energy of the interaction to the elasticity of the bead and the area of contact. The surface energies for different combinations of modified surfaces in solution were obtained from reflection interference contrast microscopy (RICM) measurements of the contact area formed by the bead and the coverslip. Studies with surfaces functionalized with ligand-receptor pairs showed that the relationship between surface energy and the association constant of the ligand binding has two regimes. At low binding affinity, surface energy increased linearly with the association constant, while surface energy increased logarithmically with the association constant in the high affinity regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfacial interaction between low-energy surfaces

This review is concerned primarily with the correlation between the interfacial interactions and the constitutive properties of low-energy organic surfaces. It starts with a discussion on the estimation of the surface free energy of organic solids from contact angles, followed by a review of the surface energetics and adhesion. The experimental measurements of surface free energy, in most cases...

متن کامل

Three Dimensional Adhesion Model for Arbitrary Rough Surfaces

We present a 3D adhesion model based on the JKR theory applied locally for all contacting asperity couple and the calculations account the van der Waals interaction beside the externally applied force. Thus, equilibrium of the system is determined by an extremum in the free total energy and subsequently the contact and the adhesion parameters are computed for that particular position. The model...

متن کامل

Influence of cell deformation on leukocyte rolling adhesion in shear flow.

Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cel...

متن کامل

Non-Local Thermo-Elastic Buckling Analysis of Multi-Layer Annular/Circular Nano-Plates Based on First and Third Order Shear Deformation Theories Using DQ Method

In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shear deformation theories, the governing equations are derived. The van der Waals interaction between the layers is simulated for multi-...

متن کامل

Mechanics of Particle Adhesion

The fundamentals of particle-particle adhesion for ultrafine particles (d < 10 μm) are presented using continuum mechanics approaches. The models for elastic (Hertz, Huber), elastic-adhesive (Derjaguin, Johnson, Maugis, Greenwood), viscoelastic (Yang), plastic-adhesive (Krupp, Molerus, Johnson, Maugis & Pollock) contact displacement response of a single, normal loaded, isotropic, smooth contact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 76 3  شماره 

صفحات  -

تاریخ انتشار 1999